Processing math: 100%

Applications of eigenvectors

很多时候需要把已有问题转化为特征值问题。

  1. 有一个对称矩阵(有时候是对称半正定矩阵),我们想要找一个方便的基。
  2. 具体的优化问题。

Setup

Given: Collection of data points xi

  • Age
  • Weight
  • Blood pressure
  • Heart rate

Find: Correlations between different dimensions

Simplest Model

One-dimensional subspace:

xiciv,v unknown

Equivalently:

xiciˆv,ˆv unknown with ||ˆv||2=1

Variational Idea

minimize ni=1||xiprojˆvxi||22subject to ||ˆv||2=1

What does the constraint do?

  • Does not affect optimal ˆv.
  • Removes scaling ambiguity.
Geometric Interpretation

Geometric Interpretation

Review from Last Lecture

mincii||xiciˆv||22\xRightarrowci=xiˆvi||xi(xiˆv)ˆv||22=i||xi||222i(xiˆv)2+i(xiˆv)2=i||xi||22i(xiˆv)2=const.i(xiˆv)2=const.||XTˆv||22=const.ˆvTXXTˆv,

X=[|||x1x2xn|||]

XTˆv=[x1ˆvx2ˆvxnˆv]

Equivalent Optimization

maximize ||XTˆv||22subject to ||ˆv||2=1

homogeneous quadratic function with quadratic constraint,有二次约束(尤其是norm为1)的齐次二次优化问题,可以转化为特征值问题。

Λ(ˆv;λ)=12ˆvTXXTˆv+λ(1212||ˆv||22)0=ˆvΛ(ˆv;λ)=XXTˆvλˆvXXTˆv=λˆv

vXXTˆv=λvˆv=λ 因此最优的ˆvXXT的最大的特征值对应的特征向量。

End Goal

Eigenvector of XXT with largest eigenvalue.

"Firs principal component"

More after SVD.

问题转化

min12xTAxxTbAx=bmin12xTAx s.t. ||x||22=1Ax=λx,A positive semidefinite

Physics

Newton:

F=md2xdt2

Hooke:

F=k(xy)

FR3n,XR3nF=MX=Axv:=x

ddt[xv]=[0I3n×3nM1A0][xv]

General Linear ODE

y是关于时间的向量值函数,yiB的特征向量,λi是特征值。 y=ByByi=λiyi

可以假设: y(0)=c1y1+c2y2++ckyk 此外,假设yi span Rn,则: y(t)=ni=1ci(t)yiBy=ni=1ci(t)Byi=ni=1ci(t)λiyiy(t)=ni=1ci(t)yi 因为By=y: ci(t)=λici(t)ci(t)=ci(0)eλity(t)=c1eλ1ty1+c2eλ2ty2++ckeλktyk

Linear Systems

b=c1x1+c2x2++ckxkAx=bx=c1λ1x1+c2λ2x2++ckλkxk

Verify:

Ax=ki=1ciλiAxi=ki=1ciλiλixi=ki=1cixi=b

Organizing a Collection

Setup

Have: n items in a dataset

wij0 similarity of items i and j

wij=wji

Want: xi embedding on R

我们希望wij越大,xixj越接近: min{xi}E(x),E(x)=i,jwij(xixj)2,s.t. ||x||22=1ix2i=11x=0ixi=0

Let a:=w1,

E(x)=i,jwij(x2i2xixj+x2j)=i,jwijx2i2i,jwijxixj+i,jwijx2j=2iaix2i2i,jwijxixj=2xTAx2xTWx=2xT(AW)x,A=diag(a)

Fact:

(AW)1=diag(a)1W1=aa=0

Lagrange multiplier:

Λ=2xT(AW)xλ(xTx1)μ(1Tx)xΛ=4(AW)x2λxμ1=0

Premultiply by 1T on both sides:

1T4(AW)x1T2λx1Tμ1=41T(AW)x2λ1Txμn=00μn=0μ=0Λ=02(AW)x=λxE(x)=xT(AW)x=xTλx=λxTx=λ

x is eigenvector of AW with smallest λ0.

λ 不为0的原因是E(x)不能为0,否则所有的xi相等,与约束条件矛盾。

Definition

Eigenvalue and eigenvector

An eigenvector x0 of ARn×n satisfies Ax=λx for some λR; λ is an eigenvalue. Complex eigenvalues and eigenvectors instead have λC and xCn.

Scale doesn't matter!

can constrain ||x||2=1.

Spectrum and spectral radius

The spectrum of A is the set of all eigenvalues of A. The spectral radius ρ(A) is the maximum value |λ| over all eigenvalues λ of A.

Eigenproblems in the Wild

  • Optimize Ax subject to ||x||2=1.(important!)
  • ODE/PDE problem: Closed solutions and approximations for y=By.
  • Critical points of Rayleigh quotient: xTAx||x||22.
作者

Gehan Zheng

发布于

2023-12-22

更新于

2023-12-24

许可协议

评论

评论
Powered by Waline v2.6.3