Stress hessian computation in FEM
介绍
在进行软体模拟时,如果使用牛顿法计算最优的下降方向,需要计算能量密度函数\(\Psi\)关于位置\(\vec {\mathbf{x}}\) 的Hessian矩阵,即\(\frac{\partial^2 \Psi}{\partial \vec {\mathbf{x}}^2}\)。其中\(\vec {\mathbf{x}}\)是一个四面体的四个顶点的位置。
\[ \begin{equation} \frac{\partial^2 \Psi}{\partial {\mathbf{x}^2}} = \text{vec}(\frac{\partial F}{\partial {\mathbf{x}}})^T \text{vec}(\frac{\partial P}{\partial F}) \text{vec}(\frac{\partial F}{\partial {\mathbf{x}}}) \end{equation} \]