Force computation in FEM

证明1

首先,已知

\[ \vec {\mathbf{x}} = \begin{bmatrix} \vec x_1 & \vec x_2 & \vec x_3 \end{bmatrix}\\ D_s = \begin{bmatrix} \vec x_1-\vec x_4 & \vec x_2-\vec x_4 & \vec x_3-\vec x_4 \end{bmatrix}\\ \begin{aligned} &\frac{\partial (D_s)_{kl}}{\partial \vec {\mathbf{x}_{ij}}} e_i\otimes e_j\otimes e_k\otimes e_l\\ &=\frac{\partial \vec {\mathbf{x}}_{kl}}{\partial \vec {\mathbf{x}}_{ij}} e_i\otimes e_j\otimes e_k\otimes e_l\\ &= \delta_{ik}\delta_{jl} e_i\otimes e_j\otimes e_k\otimes e_l \end{aligned} \] 这里把\(\vec {\mathbf{x}}\)后三列写成一个3x3的矩阵。\(D_m^{-1}\)的分量表示为\(d_{mn}\)\(P\)的分量表示为\(P_{rs}\),则能量密度函数\(\Psi\)关于位置\(\vec {\mathbf{x}}\) 的梯度为:

阅读更多

Projective Dynamics 的local step实现推导

介绍

Projective Dynamics是一种用于软体模拟的方法,算法分为local step和global step两个部分。其中local step可以对于每个四面体约束并行计算,global step只需要求解一个线性方程组,而他的矩阵非常特殊,是一个Gram矩阵,因此可以预先用Cholesky分解。本文主要介绍local step的实现的推导过程。用Corotated strain model的CUDA的实现作为例子。

阅读更多